Prediction of Human Gene - Phenotype Associations by Exploiting the Hierarchical Structure of the Human Phenotype Ontology

نویسندگان

  • Giorgio Valentini
  • Sebastian Köhler
  • Matteo Ré
  • Marco Notaro
  • Peter N. Robinson
چکیده

The Human Phenotype Ontology (HPO) provides a conceptualization of phenotype information and a tool for the computational analysis of human diseases. It covers a wide range of phenotypic abnormalities encountered in human diseases and its terms (classes) are structured according to a directed acyclic graph. In this context the prediction of the phenotypic abnormalities associated to human genes is a key tool to stratify patients into disease subclasses that share a common biological or pathophisiological basis. Methods are being developed to predict the HPO terms that are associated for a given disease or disease gene, but most such methods adopt a simple ”flat” approach, that is they do not take into account the hierarchical relationships of the HPO, thus loosing important a priori information about HPO terms. In this contribution we propose a novel Hierarchical Top-Down (HTD) algorithm that associates a specific learner to each HPO term and then corrects the predictions according to the hierarchical structure of the underlying DAG. Genome-wide experimental results relative to a complex HPO DAG including more than 4000 HPO terms show that the proposed hierarchical-aware approach significantly improves predictions obtained with flat methods, especially in terms of precision/recall results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Computational Analysis of Protein Phenotype Changes Due to Plausible Deleterious Variants of Human SPTLC1 Gene

Genetic variations found in the coding and non-coding regions of a gene are known to influence the structure as well as the function of proteins. Serine palmitoyltransferase long chain subunit 1 a member of α-oxoamine synthase family is encoded by SPTLC1 gene which is a subunit of enzyme serine palmitoyltransferase (SPT). Mutations in SPTLC1 have been associated with hereditary sensory and auto...

متن کامل

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

A Gene-Phenotype Network for the Laboratory Mouse and Its Implications for Systematic Phenotyping

The laboratory mouse is the pre-eminent model organism for the dissection of human disease pathways. With the advent of a comprehensive panel of gene knockouts, projects to characterise the phenotypes of all knockout lines are being initiated. The range of genotype-phenotype associations can be represented using the Mammalian Phenotype ontology. Using publicly available data annotated with this...

متن کامل

Mining Functional Modules by Multiview-NMF of Phenome-Genome Association

Background: Mining gene modules from genomic data is an important step to detect new gene members of the pathways or other relations such as protein-protein interactions. In this work, we explore the feasibility of detecting gene modules by factorizing gene-phenotype associations with phenotype ontologies rather than the conventionally used gene expression data. In particular, the hierarchical ...

متن کامل

Genotype and phenotype of COVID-19: Their roles in pathogenesis

COVID-19 is a novel coronavirus with an outbreak of unusual viral pneumonia in Wuhan, China, and then pandemic. Based on its phylogenetic relationships and genomic structures the COVID-19 belongs to genera Betacoronavirus. Human Betacoronaviruses (SARS-CoV-2, SARS-CoV, and MERS-CoV) have many similarities, but also have differences in their genomic and phenotypic structure that can influence th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015