Prediction of Human Gene - Phenotype Associations by Exploiting the Hierarchical Structure of the Human Phenotype Ontology
نویسندگان
چکیده
The Human Phenotype Ontology (HPO) provides a conceptualization of phenotype information and a tool for the computational analysis of human diseases. It covers a wide range of phenotypic abnormalities encountered in human diseases and its terms (classes) are structured according to a directed acyclic graph. In this context the prediction of the phenotypic abnormalities associated to human genes is a key tool to stratify patients into disease subclasses that share a common biological or pathophisiological basis. Methods are being developed to predict the HPO terms that are associated for a given disease or disease gene, but most such methods adopt a simple ”flat” approach, that is they do not take into account the hierarchical relationships of the HPO, thus loosing important a priori information about HPO terms. In this contribution we propose a novel Hierarchical Top-Down (HTD) algorithm that associates a specific learner to each HPO term and then corrects the predictions according to the hierarchical structure of the underlying DAG. Genome-wide experimental results relative to a complex HPO DAG including more than 4000 HPO terms show that the proposed hierarchical-aware approach significantly improves predictions obtained with flat methods, especially in terms of precision/recall results.
منابع مشابه
Comprehensive Computational Analysis of Protein Phenotype Changes Due to Plausible Deleterious Variants of Human SPTLC1 Gene
Genetic variations found in the coding and non-coding regions of a gene are known to influence the structure as well as the function of proteins. Serine palmitoyltransferase long chain subunit 1 a member of α-oxoamine synthase family is encoded by SPTLC1 gene which is a subunit of enzyme serine palmitoyltransferase (SPT). Mutations in SPTLC1 have been associated with hereditary sensory and auto...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملA Gene-Phenotype Network for the Laboratory Mouse and Its Implications for Systematic Phenotyping
The laboratory mouse is the pre-eminent model organism for the dissection of human disease pathways. With the advent of a comprehensive panel of gene knockouts, projects to characterise the phenotypes of all knockout lines are being initiated. The range of genotype-phenotype associations can be represented using the Mammalian Phenotype ontology. Using publicly available data annotated with this...
متن کاملMining Functional Modules by Multiview-NMF of Phenome-Genome Association
Background: Mining gene modules from genomic data is an important step to detect new gene members of the pathways or other relations such as protein-protein interactions. In this work, we explore the feasibility of detecting gene modules by factorizing gene-phenotype associations with phenotype ontologies rather than the conventionally used gene expression data. In particular, the hierarchical ...
متن کاملGenotype and phenotype of COVID-19: Their roles in pathogenesis
COVID-19 is a novel coronavirus with an outbreak of unusual viral pneumonia in Wuhan, China, and then pandemic. Based on its phylogenetic relationships and genomic structures the COVID-19 belongs to genera Betacoronavirus. Human Betacoronaviruses (SARS-CoV-2, SARS-CoV, and MERS-CoV) have many similarities, but also have differences in their genomic and phenotypic structure that can influence th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015